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Abstract

The influence of measurement errors on estimated stress is investigated in reduced sigma space on the basis of numerous sets of homogeneous

fault/slip data generated under different extensional stress and then modified by varying measurement errors for the striation pitch. For a given

measurement error, error propagation to a datum vector depends upon the controlling stress and fault orientation with respect to the controlling

stress. For a given stress ratio, both the dispersion of datum vectors (i.e. root mean square cosine) and the misfit between estimated and controlling

stresses (i.e. similarity and stress difference) increase with the increase in measurement error. The two measures appear generally smaller at small

measurement error than at large error and have a strong tendency to increase with stress ratio for a given measurement error. The measurement

error has an apparent effect in estimated stress only if it is greater than 108, implying a limited effect on homogeneous fault slip data that is

carefully measured at outcrop, in which a smaller error can be guaranteed in a majority of cases.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Faults are widely used to estimate stress in deformed rocks,

thereby becoming an important stress gauge for structural

geologists. The technique of stress inversion has received much

attention recently (Ramsay and Lisle, 2000). A variety of

inversion methods have been developed (e.g. Angelier, 1979,

1994; Etchecopar et al., 1981; Armijo et al., 1982; Simón-

Gómez, 1986; Huang, 1988; Kleinspehn et al., 1989;

Fleischmann and Nemcok, 1991; Hardcastle and Hills, 1991;

Nemcok and Lisle, 1995; Nemcok et al., 1999; Yamaji, 2000;

Lisle et al., 2001; Shan et al., 2003, 2004a,b,c; Xu, 2004). They

differ in algorithms designed to solve for stress. Some of the

techniques deal with single-phase (or homogeneous) fault/slip

data and others enable analysis of multiple-phase (or

heterogeneous) fault/slip data. The principal stress orientations

and stress ratio can be estimated by the inversion methods. For

a given set of fault/slip data, the misfit between estimated and

real stresses may depend upon the inversion method, the
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heterogeneity (or multiple phases) of the fault/slip data,

deviation from the assumptions, measurement errors and so

forth.

When fault/slip data are heterogeneous, none of the

methods for homogeneous data can be used properly, giving

rise to meaningless estimates. In this case, a crucial task is

the separation of data into many homogeneous groups

before stress inversion. Existing inversion methods (e.g.

Hardcastle and Hills, 1991; Nemcok et al., 1999; Yamaji,

2000; Shan et al., 2003, 2004c) developed for this task

differ in the theory of data separation and are likely to

produce variable results for a given data set (Liesa and

Lisle, 2004). Meanwhile, an old clustering problem re-

emerges: What is the optimal number of groups we need to

make among the data? For the answer, we may turn either

to field observations about relative ages of fault formation

or reactivation, or to the data themselves in some elaborate

way (e.g. Shan et al., 2004c).

There are two fundamental assumptions for stress

inversion: homogeneous stress field in a single phase of

deformation, and parallelism between the fault striation and

the maximum resolved shear in the fault plane from which

any departure would lead to deviation of the estimated stress

from the controlling (real) stress. Violation of either or both

assumptions could be due to reasons such as intermittent
Journal of Structural Geology 28 (2006) 943–951
www.elsevier.com/locate/jsg

http://www.elsevier.com/locate/jsg
mailto:shanyehua@yahoo.com.cn


Y. Shan et al. / Journal of Structural Geology 28 (2006) 943–951944
fault slip, asynchronous slip along the fault (e.g. Price, 1988;

Gutscher et al., 1996), heterogeneous distributions of

earthquake shear stress drop over a large area of the rupture

surface (e.g. Day et al., 1998) and heterogeneous stress

distributions in structurally complex areas (e.g. Mitra, 1987;

Koyi, 1995). In reality, some or all of these reasons are

inevitable. They can lead to dispersion in the parameter

space of measured fault/slip data, or even possibly the

presence of superficially heterogeneous fault/slip data. For

the latter, we have meaningless data groups and false

estimated stresses through conventional inversion methods.

This is indeed the Achilles’ heel of stress inversion.

Furthermore, errors are inevitable while one measures the

orientations of geological features, such as faults or striations,

at outcrop with a compass. Measurement accuracy depends

upon the precision of compass readings, the exposure quality,

experience, skill and carefulness of the person making the

measurements and so forth. The larger the measurement errors,

the more dispersed the data tend to be and the more incorrect

the estimated stress will be.

Heterogeneity (or multiple phases) of fault/slip data,

deviation from the assumptions, and measurement errors

appear naturally combined with each other in data sets from

multi-deformed regions. It is almost impossible to evaluate

these factors, because of the difficulty in quantifying them

and because of little or no knowledge about the controlling

stress. This in turn decreases the reliability of estimated

stress. We are interested here in particular questions about

measurement error. For example, in the reduced sigma

space of Fry (1999), how much misfit is there between

datum vectors with and without a measurement error? How

does the measurement error affect estimated stress? These

questions can be answered without taking the possibility of

multiple phases of fault slip into account, as will be shown

below.

The aim of this paper is to investigate the influence of

measurement errors on estimated stress in reduced sigma

space, although it has been addressed before in the other

parameter space (e.g. Angelier, 1984; Xu, 2004). For

simplicity, only single-phase (homogeneous) fault/slip data

were considered in this paper. Although we believe the answers

might shed light on the cases of multiple (heterogeneous) fault/

slip data, we have intentionally avoided their complexity.

2. Inversion in the sigma space

Although it has a seemingly non-linear character, stress

inversion becomes linear in the most part after some

transformation. In reduced sigma space (Fry, 1999), fault/slip

data were transformed into datum vectors that, if homo-

geneous, tend to lie in or near a hyperplane (a higher dimension

analogue of a 2D plane in 3D space) across the origin. This

linearity facilitates the inversion of stress in terms of the use of

sophisticated algorithms, some of which are even effective in

processing heterogeneous data (Shan et al., 2003, 2004c).

A fundamental assumption of stress inversion is the

parallelism between the fault striation and the maximum
resolved shear in the fault plane (Angelier, 1979):

nssT Z 0 (1)

where s is the unknown controlling stress tensor, n is the unit

vector normal to the fault plane, s is the directional vector

perpendicular to the fault striation in the fault plane and the

superscript T is the operation of matrix transposition.

Let nZ[n1, n2, n3] and sZ[s1, s2, s3]. Rewriting Eq. (1):

X3
iZ1

X3
jZ1

cijsij Z 0 (2)

where cijZnisj. Because of the nine elements of stress tensor,

the full sigma space has a dimension of 9. It can be reduced in

dimension from 9 to 5 by considering the symmetry of stress

tensor and by using some auxiliary constraint below (Fry,

2001):

X3
iZ1

sii Z 0 (3)

Solving s11 from Eq. (3) and inserting the result into Eq. (2):

btT Z 0 (4)

where the datum vector bZ[c22Kc11, c33Kc11, c12Cc21, c13C
c31, c23Cc32], and the stress vector tZ[s22, s33, s12, s13, s23]

(Shan et al., 2003).

Geometrically, in reduced sigma space, the stress vector is

perpendicular to the datum vector, as in Eq. (4). The

perpendicularity, as well as another constraint of the unit

length of the stress vector, guarantees that homogeneous datum

vectors prefer to lie in or near a hyperplane across the origin of

the sigma space (Fry, 1999). Normal to the hyperplane is the

optimal stress vector. However, in relation to t, Kt is also a

solution of stress vector. All the data, as assumed homo-

geneous, indicate either t or Kt. The correct identification

between them requires the use of fault slip senses (Shan et al.,

2004a).
3. Error propagation to datum vectors

Our first interest is to consider the misfit between the datum

vectors in reduced sigma space with and without a

measurement error, namely, the propagation of measurement

errors to datum vectors. For a certain given error, the misfit

depends not only upon fault orientations with respect to the

controlling stress but also stress ratio.

For each individual fault/slip datum, measurement errors

exist not only in the dip direction and dip angle of the fault

plane, but also in the bearing and plunge of the fault

striation, or in the pitch. In order to describe the

measurement error of fault/slip data, we need to consider

three errors associated with (i) the fault dip direction, (ii) the

fault dip angle, and (iii) the striation pitch. However, these

kinds of errors are not independent, because the fault

striation lies in the fault plane. The first two errors and the

third error are dependent upon each other. Once
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measurement errors are directly added to a certain fault/slip

datum, the new datum must be adjusted in some way to

accommodate compatibility among its dip direction, dip

angle and plunge.
3.1. Procedure

In this study, for the sake of simplicity, only the error for

the pitch was taken into account. This made for convenience

in our discussion below, by virtue of a smaller number of

variables under consideration. A measurement error is herein

defined as positive if the adjusted plunge is larger than the

original one, or as negative if smaller. An exception to this

definition is where the fault striation is parallel to the down-

dip line in the fault plane. However, in this case, the sign of

measurement error has no influence on the deviation of the

datum vector.

In the light of an infinite number of stresses in nature, our

discussionwas confined to two controlling stresses with the same

principal orientations but different stress ratios. Each stress

represents an Andersonian state for the extensional regime, in

which the maximum (s1), intermediate (s2), and minimum (s3)

principal stresses are directed upwards, northwards and east-

wards (Fig. 1a). They have the same directions as the Z-axis, the

X-axis and the Y-axis, respectively, in the Cartesian system. The

corresponding stress ratios, defined as (s2Ks3)/(s1Ks3), are

0.25 and 0.75 for the two controlling stresses. Four different

measurement errors for the striation pitch, namelyK88,K48, 48

and 88, are equally added to fault/slip data produced under a

given stress tensor. Although it is not difficult to consider other

stresses differing from our two controlling stresses, either in

stress ratio or in principal directions or in their combinations,

and/or other measurement errors, we leave that to interested

readers in the interest of brevity.

The procedure used to investigate the effects of measure-

ment errors can be described as follows:

(1) Assign values to the controlling stress and measurement

error.
Fig. 1. Prescribed principal directions (a) and contours of striation pitches in angl

projection. The maximum, intermediate and minimum principal stress directions ar
(2) Take the orientation of each fault surface from a 360!90

integer set, namely [08, 3598] for the fault dip direction,

and [18, 898] for the fault dip angle, in a sequential manner,

and then:

(a) determine the attitude of the striation in the fault plane

under the prescribed stress,

(b) determine the attitude of the striation with the

assigned measurement error, and

(c) calculate the misfit in angle between the two datum

vectors in reduced sigma space with and without the

measurement error.
3.2. Results

Results are shown in Figs. 1 and 2 and Table 1, from which

several conclusions can be drawn and summarized below:

(1) The misfit between datum vectors with and without a

measurement error appears to have an upper limit of a little

larger than the value of the measurement error and a lower

limit of roughly half of the error (Table 1). This indicates

that the misfit is approximately of the same order of

magnitude as the measurement error itself.

(2) The misfit between datum vectors with and without a

measurement error reaches a minimum where the fault dip

direction is parallel to the intermediate principal stress and

has a dip angle of ca. 458. For a stress ratio of 0.25, two

maxima exist where the fault dip direction is parallel to the

minimum principal stress and has a dip angle of about 458.

In contrast, for a stress ratio of 0.75, there are four maxima,

close to each of the two minima, where the fault has a dip

of about 608.

(3) For a given controlling stress, the sign of the measurement

error has a very slight influence on the deviation of datum

vector caused by the error itself. There is a little difference

in the deviation of datum vectors whether the error sign is

positive or negative.
e for a stress ratio of 0.25 (b) and of 0.75 (c). Equal-area, lower hemispheric

e represented by the square, the circle and the triangle, respectively.



Fig. 2. Contours of the angular misfit in angle between datum vectors without and with measurement errors of 88 ((a) and (e)), 48 ((b) and (f)),K48 ((c) and (g)) and

K88 ((d) and (h)). Equal-area, lower hemispheric projection. (a)–(d) are for a stress ratio of 0.25 and (e)–(h) for a stress ratio of 0.75. The hachured contours have the

least levels. See the text for more explanation.
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4. Influence of measurement error on estimated stress

Normally, measurement errors exist in any fault/slip data

measured at outcrop. So, in reduced sigma space datum vectors

become dispersed with respect to the hyperplane normal to the

vector of the controlling stress. This would lead to the

deviation of estimated stress through applying the method of

Shan et al. (2003) to these data, from the controlling stress.

Also, the deviation depends upon both measurement errors and

fault orientations with respect to the controlling stress.
Table 1

Statistics of misfit between datum vectors with and without measurement error

under varying stress ratio

Stress ratio Measurement

error (8)

Misfit in angle (8)
4.1. Definitions of parameters

Despite other possible indicators, root mean square

cosine (Shan and Fry, 2005) is used to measure the

dispersion of datum vectors in the reduced sigma space,

while the intersecting angle and similarity are used to

compare the controlling and the estimated stress vectors. In

addition, stress difference (Orife and Lisle, 2004) is used to

describe the misfit between the controlling and the estimated

stresses.
Maximum Minimum Average

0.25 K8 8.974 5.675 7.893

K4 4.473 2.827 3.913

4 4.470 2.829 3.851

8 8.30 5.658 7.643

0.75 K8 11.073 5.675 8.872

K4 5.487 2.831 4.411

4 5.365 2.831 4.351

8 10.591 5.662 8.637
4.1.1. Root mean square cosine

In order to solve for stress vector in the reduced sigma

space, an objective function is defined as the sum of squares of

distances of individual datum vectors to the unknown hyper-

plane (Shan et al., 2003). The solution of the expected stress

vector is obtained when the objective function reaches the

minimum value (E):
E Z
Xn

iZ1

bit
0T

� �2

(5)

where n is the number of fault/slip data, bi is the ith datum

vector and t 0 is the best solution of stress vector. The

multiplication of bi and t 0 equals their distance, because all

datum vectors and the stress vector have a unit length, as

required before.

The root mean square cosine (R) is defined as follows (Shan

and Fry, 2005):

R Z

ffiffiffiffi
E

n

r
(6)

The parameter reflects the mean deviation of datum vectors

from the hyperplane, normal to which is the estimated stress

vector. There is no definite relation between the dispersion of
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data and the accuracy of stress estimation, but the more

dispersed the data, the more likely the estimated stress is to be

inaccurate.

4.1.2. Intersecting angle and similarity

As stated before, another auxiliary constraint for stress

inversion is the unit length of stress vectors (Fry, 1999; Shan

et al., 2003). Let test and tcon stand for estimated and controlled

stress vectors, respectively. The intersecting angle (q) and

similarity (g) between the two vectors are defined as:

gZ testt
T
con (7)

qZ arccosðgÞ (8)
Fig. 3. Equal-area, low-hemispheric projection of 10 randomized fault data.

Fault dip directions were sampled at random from a range of 0–3608, whereas

fault dip angles were from a range of 0–908. See the caption of Fig. 1 for more

explanation.
4.1.3. Stress difference

Let l1, l2 and l3 be the maximum, intermediate and

minimum eigenvalues of the difference matrix between the

normalized estimated stress tensor and the normalized

controlling stress tensor. The stress difference (D) between

the two stress tensors is calculated in the following way (Orife

and Lisle, 2003):

D Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1Kl2Þ

2 C ðl2Kl3Þ
2 C ðl1Kl3Þ

2
p

3
(9)

D has a range of 0–2. It equals 0 when the two tensors are

identical and 2 when one is the negative of the other. According

to the statistical study of Orife and Lisle (2003), stress tensors

are considered very similar if D!0.66, similar if 0.66!D!
1.01, different if 1.01!D!1.71, or very different if DO1.71.

4.2. Procedure

In this section, the measurement error sign is allowed to

vary as a variable, so that some random nature of the measure

error can be considered. For a certain measurement error, there

are two options to incorporate it into a fault/slip datum by

either increasing or decreasing the striation’s pitch by the same

angle. We have a number of 2n different options for a set of n

fault/slip data. Therefore, the computing time we take in

addressing every possibility increases exponentially with data

number n. Even for a small data number, 30 for example, the

time becomes too large to do with a personal computer.

Sensibly, we had better have a small value of n, 10 in this study

for instance, which must be larger than 4, the minimum for

stress inversion in reduced sigma space (Fry, 1999). A set of 10

fault data (Fig. 3), including dip directions and dip angles, were

generated in a random manner. They were utilized as a

template to determine the attitudes of fault striations in the fault

planes for different stress ratios.

For a parallel study to the one in the previous section, the

Andersonian stress state for the extensional regime was also

considered, and so are the prescribed principal directions

(Fig. 3) and the Cartesian coordinates. The stress ratios

considered are 0.0, 0.25, 0.50, 0.75 and 1.00. Measurement

errors were added to fault pitches as integer numbers from 08

to 208.
The procedure used in this section can be described as

follows:

(1) assign values to the controlling stress and measurement

error,

(2) determine the attitudes of fault striations in the fault planes

under the assigned stress,

(3) take each of the options to assign measurement errors to

fault/slip data, and estimate the stress from the data with

the measurement errors through using the method of Shan

et al. (2003), and

(4) calculate the parameters for dispersion of datum vectors

and for similarity between the estimated and the

controlling stresses.
4.3. Results

Results from the above calculations are shown in Figs. 4–7.

As shown in Fig. 4, for a prescribed stress ratio, the root mean

square cosine appears generally smaller when due to a small

measurement error than that when due to a large error. The

maximum, minimum and average values increase with increase

of the measurement error, indicating that the root mean square

cosine becomes more dispersed when larger measurement

errors are added. For a certain error, the root mean square

cosine becomes more dispersed when a larger stress ratio is

considered. For example, in the case of a measurement error

being 8.08, root mean square cosine has an average value of

0.433 for a stress ratio of 0.0, and of 0.799 for a stress ratio of

1.0. The larger the stress ratio, the more dispersed datum

vectors tend to be in the space. This is consistent with the

previous conclusion, which states that datum vector can be
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Fig. 6. Differences between the controlling stress and the estimated stress due to different stress ratios of 0.0 (a), 0.25 (b), 0.5 (c), 0.75 (d) and 1.0 (e). The range from

the minimum to the maximum (thick line) and average (small diamond) are displayed at each individual measurement error for a given stress ratio. Orife and Lisle’s

(2003) critical values such as 0.66, 1.01 and 1.71 are shown as dashed lines. See the text for more explanation.
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increasingly deviated with increase in the assigned stress ratio.

Therefore, the dispersion of datum vectors is affected not only

by measurement error, but also by fault orientations (Fig. 3)

respective to the controlling stress.

Similarly, the intersecting angle between the controlled

and the estimated stress vectors (Fig. 5) is generally smaller

when due to a small measurement error than that due to a

large error. Both the maximum and the average values

increase with increase in the measurement error. The

minimum has a strong tendency of increasing with the

increase of the measurement error, in spite of some

fluctuation(s). The average intersecting angle for a given
Fig. 7. Relationship between the root mean square cosine and the stress difference d

thin line and the range of the latter by a vertical thin line. Both intersect at the averag

error.
measurement error also tends to increase with the increase of

the assigned stress ratio. An exception to this can be seen in

Fig. 5b, where the average values appear smaller in most or

all cases than those for a different stress ratio. We believe

that, for these instances, the exception can be only explained

by the more distinctive influence in stress estimation of fault

orientation with respect to the controlling stress. However,

there exists no such tendency for the maximum value, which

varies significantly with the assigned stress ratio. In sum, the

fluctuation of the intersecting angle depends mainly upon

two factors, the measurement error and fault orientation with

respect to the controlling stress. The larger either of the two
ue to a stress ratio of 0.0. The range of the former is represented by a horizontal

es (small filled circles), near which is the value of corresponding measurement
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factors is, the greater the intersecting angle tends to be, and

the less accurate estimated stress would be. The way they

work together is more complicated than we imagined.

Comparison between Figs. 5 and 6 reveals the close

similarity in distribution pattern between the stress difference

and the intersecting angle. The stress difference is less than

0.66 at an error of less than 158, indicating a very close

similarity between the controlling and the estimated stress

tensors. Only in a few cases of a larger measurement error does

it exceed 1.01, indicating that the estimated stress tensor is

different from the controlling one.

In the light of either the similarity or the intersecting angle,

critical values of the stress difference appear to overestimate

similarity between controlling and estimated stresses. For

example, for a measurement error of 168 and a stress ratio of

1.0, the maximum intersecting angle and the maximum stress

difference are 42.8128 and 0.615, respectively. One would

consider little similarity between the estimated stress and the

controlling stress in terms of the large maximal angle, whereas

the maximal stress difference indicates they are very similar.

5. Discussion

5.1. Influence of fault orientations

As described above, fault orientations with respect to the

controlling stress have an obvious effect on the estimated stress

in the presence of a measurement error (Figs. 5 and 6). The

misfit between the controlling and the estimated stresses has a

strong tendency to increase with the increase of the assigned

stress ratio. This is attributed to the increasing possibility of

having larger error propagation to a datum vector in reduced

sigma space due to a given measurement error and stress ratio

(Fig. 2). For homogeneous data sets having small measurement

errors, no less than 88 for 10 data in the paper, for instance, fault

orientations seem to play such a minor role in affecting the

estimated stress, because of the limited error propagation, that

they may be neglected in comparison with the measurement

error and the simplification associated with fundamental

assumptions. However, it is very probable that this minor

effect would be aggravated in the case of heterogeneous data

relating to the controlling stresses, some or all of them being

similar to each other (Shan et al., 2003).

5.2. Accuracy of estimated stress

As shown in Figs. 4–6, the stress difference has something

to do with the root mean square cosine. The smaller the root

mean square cosine, the smaller the stress difference tends to

be. Both have ranges increasing with increase in measure-

ment errors (Fig. 7). For a value of 108 measurement error,

and the root mean square cosine of 0.1900–0.7254, the

difference is in a range of 0.9319–0.9998, indicating the

accuracy of estimated stress. The measurement error,

although somewhat large because a smaller one can be

guaranteed by careful measurement at most outcrops, still

has little role in affecting the accuracy of estimated stress. In
spite of the simplification that all artificial data sets used

(Fig. 3) are affected only by measurement errors, we believe

this approach might be of some value in implying the

accuracy of stress estimated from real fault/slip data. For a

set of homogeneous data having a small measurement error,

less than 108 for instance, we would not like to attribute a

large value of the root mean cosine to the error, but to other

influences such as heterogeneity of fault/slip data and

deviation from assumptions. In this case, we are most likely

to have an accurate estimate of stress if the value is small.

For carefully measured fault slip data, the measurement error

is well controlled, so that its effect on estimated stress would

be minor, compared with the effect of other influences.
6. Conclusions

In this paper, numerous sets of homogeneous fault/slip data

were generated under varying extensional stress and modified

with varying measurement errors for the striation pitch. They

were used to investigate error propagation to a datum vector in

the reduced sigma space and to examine the accuracy of

estimated stress through applying Shan et al.’s (2003) method

to the fault/slip data. For this purpose, we performed a vast

number of numerical experiments with particular parameters,

from which major conclusions have been drawn as follows:

(1) For any given measurement error, the error propagation to

a datum vector is affected by the controlling stress (i.e.

principal directions and stress ratio) and fault orientation

(i.e. dip direction and dip angle). The deviation is

approximately of the same order of magnitude as the

measurement error itself. It reaches the minimum where

the fault dip direction is parallel to the intermediate

principal stress. This suggests a greater possibility of an

accurately estimated stress as measured faults dip more

towards the intermediate principal stress.

(2) For a given stress ratio, both the dispersion of datum

vectors (measured by the root mean square cosine) and the

misfit between estimated and controlling stresses

(measured by the similarity and by the stress difference)

increase with increase in measurement error.

(3) Apart from measurement errors and deviation from

fundamental assumptions, the orientation of a fault plane

relative to the controlling stress is a third influence on the

estimated stress. When a measurement error is added to

corresponding fault/slip data, the misfit between the

controlling and the estimated stresses has a strong

tendency to increase with the increase of the assigned

stress ratio. However, this influence is minor compared

with the influence of the measurement errors.

(4) For the 10 fault/slip data addressed in the paper, the

measurement error has an apparent effect in estimated

stress only if it is greater than 108. Below this limit, we

always have accurately estimated stress. As a smaller

measurement error can be guaranteed by careful measure-

ment at a majority of outcrops, this implies the limited
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effect of the measurement error for homogeneous fault slip

data that are carefully measured.
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